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ABSTRACT 
 
In the field of jewelry manufacturing, the traditional characterization of gold and silver alloys relies heavily on 
extensive physical, chemical, mechanical, and technological testing. This research advances the state of the art 
by introducing an innovative approach using Artificial Intelligence (AI) and Big Data. Leveraging these 
technologies, we create predictive models for untested alloy compositions, forecasting critical properties such as 
melting range, color, hardness, among others. This technique significantly reduces the need for conventional 
testing, enhancing both accuracy and efficiency. The methodology encompasses data analysis, AI-driven 
predictions, and validation, focusing on numerous essential attributes in alloy design. Our work represents a 
pioneering contribution to the industry, opening new avenues for material understanding and streamlined 
production. 

INTRODUCTION 
 
Over the years, a significant amount of data has been accumulated through the analysis of our alloys. Recently, 
an exploration of the potential of Artificial Intelligence (AI) was initiated to see if AI could be used to predict the 
primary physical properties of future alloy compositions.  
To undertake this endeavor, the methodology of machine learning was adopted1,2. Machine learning, a branch of 
artificial intelligence, specializes in training algorithms to recognize patterns in data sets and make predictions 
autonomously. Following a process of data refinement, efforts were directed towards optimizing predictive 
accuracy through a hybrid approach. This approach involved combining machine learning with experimental 
knowledge, for example, to consider only those elements in compositions that have a tangible impact on the 
characteristic under investigation. 
A comprehensive evaluation was carried out to assess the robustness of the prediction results. This analysis 
included not only a review of relevant metrics, but also a comparative analysis of prediction errors versus actual 
experimental variances for each property under investigation. 

 
WHAT IS MACHINE LEARNING? 
 
Machine learning is a subset of artificial intelligence (AI) that focuses on the development of algorithms and 
statistical models that enable computers to perform tasks without being explicitly programmed. 
A key-feature of machine learning is the machine ability to predict a behavior based on experience, namely input 
data, mimicking the way humans base decisions3. This self-learning process relay on the application of statistical 
modelling to detect patterns and improve performance based on data and empirical information. In other words, 
machine learning means to perform a set task using input data instead than input command. 
This doesn't mean that the programmer is not involved in the learning process: feeding the data into the model, 
selecting the appropriate algorithm, and tuning its settings are actions carried out by the programmer that have 
a fundamental impact on the predictive results. 
Machine learning is divided in three main categories4:  

• Supervised Learning, where the model is trained on a set of annotated data, meaning data that includes 
both input features and corresponding desired output labels. 

• Unsupervised Learning, where the model is trained on unlabeled data, and the goal is to discover hidden 
structures or patterns in the data.  



   
 

• Reinforcement Learning, where the learning process involves training an agent to interact with an 
environment to achieve a goal. The agent learns to take actions that maximize some notion of cumulative 
reward. It learns through trial and error, receiving feedback in the form of rewards or penalties. Examples 
include training a robot to navigate a maze or teaching an AI to play a video game. 

The learning processes utilized in this work involve data with input features linked to output values, placing them 
within the realm of supervised learning among the three subdivisions of machine learning. 

 
TRAINING PROCESS 
 
The first step of the training process is data cleaning. This might involve modifying or removing incomplete, 
irrelevant, incorrectly formatted, or duplicated data. This phase can often be the most time-consuming of the 
entire process. In the specific cases that were examined in this study, the data cleaning phase primarily involved 
checking that the data recorded in the past were extracted correctly from our database, and secondarily, 
identifying and correcting some errors present in the original database itself.  
After data cleaning, there is typically a data pre-processing phase, which can include data normalization and 
standardization. Following this, the input data is divided into training and test sets. The training data set is used 
to develop and optimize the model, while the test data set is used to evaluate the model's performance in 
prediction. It is crucial to ensure that the division between training and test data does not inadvertently omit 
significant variance from the training data, as unexpected surprises may arise when applying the trained model to 
the test data. 
After the splitting into training and test sets is completed, it is time to train the model using learning algorithms. 
In the case studied in this work, supervised learning algorithms were employed, which learn from labeled data 
where each input is associated with a corresponding target outcome. Additionally, among all the supervised 
learning algorithms, only regression algorithms were utilized, as there was a need to predict a numeric outcome. 
Within the realm of regression algorithms, both ensemble and non-ensemble models have been considered. The 
main difference between the two is that an ensemble model combines the predictions from multiple individual 
models to improve overall performance. Instead of relying on a single model, ensemble methods leverage the 
collective wisdom of multiple models to make more accurate predictions. 
The final step in the machine learning process is result validation: once the model with the best performance on 
training data is obtained, it is assessed on new data, namely the test set. The concept of best performance and 
the parameters used to evaluate it are analyzed in the subsequent paragraph.  
 

RESULTS EVALUATION 
 
The analysis of the effectiveness of the regression model is carried out by assessing the values of one or more 
evaluation metrics chosen by the operator4.  In this study, the chosen metrics to evaluate a single model and 
compare the predictive abilities of different models are the R2 parameter and the mean absolute error (MAE) 
parameter. 
R2 Indicates how well the independent variables in a regression model explain the variability in the dependent 
variable. A key concept related to R2 is variance, which is a measure of dispersion or variability of the data in a 
set of observations. In other words, variance indicates how much the values in a set of data deviate from their 
mean. The greater the variance, the greater the dispersion of the data around the mean; conversely, the smaller 
the variance, the smaller the dispersion of the data. 
Mathematically, the formula for calculating the variance is: 
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The mathematical formula to calculate R2 is: 
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Where SSres is the residual variance (the differences between the observed values of the dependent variable and 
the values predicted by the model) and SStot is the total variance, which represents the sum of squares of the 



   
 
differences between the observed values of the dependent variable and the mean of the observed values of the 
dependent variable. 
In practice, R2 is calculated as the proportion of total variation in the dependent variable that is explained by the 
regression (i.e., how much the regression reduces the sum of squared residuals compared to the total sum of 
squares). 
The value of R2 ranges from 0 to 1 and can be interpreted as follows: 

- R2 =0 means that the model explains no variation in the dependent variable. 
- R2 =1 means that the model perfectly explains the variation in the dependent variable. 

The closer R2 is to 1, the better the model fits the data. 
A low R2 value could indicate that the regression model is not suitable for explaining the relationship between 
the variables or that important predictors are missing from the model. 
However, a high R2 does not necessarily imply that the model is predictive or that the correct model has been 
chosen. 
In practice, R2 is often used along with other evaluation metrics to assess the effectiveness of the regression 
model and determine if modifications or improvements are needed. 
For this work, the second metric considered has been Mean Absolute Error (MAE), calculated by taking the 
average of the absolute differences between the predicted values and the actual values.  
Its mathematical formula is: 
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In simpler terms, MAE measures the average magnitude of the errors between the predicted and actual values. 
It gives an indication of how close the predictions are to the actual values on average. Additionally, being in the 
same unit of measurement as the data, it allows for a direct assessment of how significant the prediction error is 
relative to the data to be predicted. 
Compared to other evaluation metrics, MAE is less sensitive to outlier because it considers absolute differences 
and extreme values have a linear effect on the error metric, thus the impact of outliers is not amplified. 
For an overall evaluation of the model, is important to keep in mind that the primary objective of any machine 
learning model is to derive insights from data and generalize knowledge relevant to the task we are training it to 
perform.  
Two main problems could arise during machine learning process:  

• BIAS is the error introduced by approximating a model to the real relationships within the dataset. A 
model with high bias tends to be too simple and fails to capture the complexity of the data, leading to 
inaccurate predictions on both training and test data. 

• VARIANCE measures how much the model's predictions vary for different sets of training data. A model 
with high variance tends to overfit noise in the data, resulting in very different predictions across different 
data sets and a poor predictive capacity on test data. An overfitting index is a strong deterioration 
between the metrics obtained in training, which have values very close to 1, and those obtained in testing. 

In other terms, BIAS is related to underestimating relationships in the data, while VARIANCE is related to the 
model being overly sensitive to fluctuations in the training data. A good machine learning model seeks to balance 
bias and variance to achieve accurate and generalizable predictions5. 
 
HOW MUCH DATA IS ENOUGH? 
 
Since machine learning relies on data, an obvious question is how much data is needed to train a model. In general, 
machine learning performs best when the training set includes a comprehensive range of feature combinations. 
In other words, the more diverse the combinations available in the dataset, the more effective the model will be 
at capturing the impact of each feature on the dependent variables. However, as a rule of thumb, the absolute 
minimum amount of data required is ten times the total number of independent variables or features. 
While data is essential to the self-learning process, simply having more data doesn't always lead to better 
decisions; it's the relevance of the input data that really matters. Adding irrelevant data is counterproductive, 
firstly because it could obscure the pattern being identified, and secondly because more data to analyze means 
more time and processing resources needed for the analysis. 
 
 
 



   
 

DEVELOPMENT ENVIRONMENT 
 
To fulfill the objectives of this study, we chose to utilize the tools provided by Azure Machine Learning Studio, a 
cloud platform by Microsoft tailored for developing and training machine learning models6.  Initially, we conducted 
some tests using the open-source Python library "Scikit Learn" in a Linux environment. However, the need for 
more extensive computational resources than those available prompted us to transition the entire study to a 
cloud-based environment. 
Azure Machine Learning Studio offers the capability to create multiple computation clusters with dedicated 
resources, allowing the simultaneous launch of multiple model trainings. Additionally, it provides robust Auto 
Machine Learning tools to automatically identify the most effective algorithms. 
The platform boasts a user-friendly graphical interface, enabling users to initiate trainings without writing a single 
line of code. Despite its intuitiveness, it's crucial to carefully configure training settings to avoid misinterpreting 
output data or overlooking issues like overfitting or suboptimal hyperparameter settings. 
A critical consideration is the proper configuration of processing clusters; as a Microsoft cloud service, it entails 
costs, necessitating resource allocation according to actual requirements to avoid unnecessary expenses. 
In this study, the Auto Machine Learning tool was primarily utilized to determine the best-suited algorithm for 
regression analysis. To effectively utilize this tool, four fundamental steps were followed: 

• Creating datasets compatible with the cloud environment 
• Importing datasets 
• Configuring training parameters 
• Evaluating the results 

Regarding dataset creation, it's important to note that files must be in .csv format and, for numerical data, the 
decimal separator must be a “.” to avoid data reading and conversion errors. After obtaining the correct format, 
datasets were imported, and necessary adjustments, such as defining data types for each column, were made 
before importation. 
Subsequently, training settings were configured, specifying the type of training (e.g., regression, classification), 
selecting the target column, and setting parameters like evaluation metrics and the dataset split ratio (in this study, 
always 70% - 30%). 
Upon completion of training, it's important to verify model output data to assess its effectiveness and identify 
areas for improvement. 
An interesting feature of this tool is its ability to register and publish models as real-time endpoints accessible 
from any web app via address and key provided by the service. 

RESULTS  
 
FROM COMPOSITION TO HARDNESS AS ANNEALED 
 
The first physical characteristic investigated was the hardness after cold working (75%) and annealing. To better 
understand the influence of the number of data points on the final results, several trainings were conducted, 
starting from a limited number of initial data points and gradually expanding to the full dataset. 
To achieve this, the alloys with post-annealing hardness data were divided into different categories based on 
karatage and color (Table 1). An equal number of elements was chosen for each category to ensure that, even 
after data reduction, the initial distribution was maintained, thereby preserving the maximum amount of 
information. 
 
 
 
 
 
 
 
 
 
 



   
 

Table 1: Division into categories of characterized alloys 

 RED GOLD 
ALLOYS 

YELLOW 
GOLD ALLOYS 

WHITE GOLD 
ALLOYS 

WHITE GOLD 
ALLOYS WITH 

PD 

SILVER 
ALLOYS 

(375) 18 14 9   

(417) 17 12 9   

(585) 23 33 16 1  

(750) 23 24 28 17  

(875)  6    

(917)  4    

(925)     19 
 
The prediction results for each dataset are shown in Table 2: it is evident that as the number of data increases, 
there is a corresponding improvement in evaluation metrics. Regarding the training set, the R2 value increases 
from 0.66 to 0.84, while the mean error decreases from 16 HV to 11 HV. In the case of the test set, the 
improvement is even more pronounced: for the first two datasets, R2 is actually negative, a value obtained when 
the residual deviation is greater than the absolute deviation, meaning that the error generated by the model on 
unknown data is even greater than the error generated by a potential model that uses the data average as output. 
As for the MAE of the test, we achieve a minimum value of 9 HV on the complete dataset, a good predictive 
result considering that the experimental error is usually ± 15 HV. 
 

Table 2: training parameters and results for hardness as annealed 

DATA N° 
 (TRAIN + TEST) 

FEATURES N° R2 TRAIN 
MAE 

TRAIN 
R2 TEST MAE TEST 

68 + 28 19 0.66 16 -0.47 38 

121 + 51 19 0.75 12 -0.67 38 

161 + 70 19 0.85 11 0.82 11 

193 + 84 19 0.84 11 0.89 9 

 
FROM COMPOSITION TO HARDNESS AFTER AGE HARDENING 
 
Maximum hardness after age hardening was similarly utilized to develop a predictive model. In Table 3, the 
number of alloys with hardness values after age hardening is indicated, divided for each category. The initial 
training conducted on this physical characteristic encompassed the entire dataset available. 
 

Table 3: Hardenable alloys and their distribution into categories. 

 
RED GOLD 

ALLOYS 
YELLOW 

GOLD ALLOYS 
WHITE GOLD 

ALLOYS 

WHITE GOLD 
ALLOYS WITH 

PD 

SILVER 
ALLOYS 

(375) 5   14 3   
(417) 3   11 4   
(585) 6 3 27 3   
(750) 23 30 36 20   
(875)     3     
(917)     1     
(925)         29 



   
 
 
In Table 4, the total number of data points (divided into training and testing sets), the number of features and the 
training results are listed together with the R2 and MAE metric values on both the training and testing sets. 

 

Table 4:Training parameters and prediction evaluation for hardness after age hardening with the complete dataset. 

DATA N° 
(TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

157 + 68 19 0.82 17 0.87 16 
 
From the evaluation parameters analysis, it is evident that the R2 value of the training set is similar to that of the 
testing set, suggesting a good model generalization capability. In Figure 1, the individual prediction errors for 
each alloy of the test set are visualized in detail, sorted by increasing hardness value. 

 

 
Comparing the evaluation parameter values with the results obtained for hardness after annealing, it can be 
observed that the R2 value (for both the training and testing sets) is comparable, while the mean absolute error 
is worse in both cases. The R2 value of 0.87, obtained from the testing set for predicting hardness after annealing 
and after age hardening, indicates that in both cases, approximately 87% of the variance in the dependent variable 
can be explained by the independent variables. 
Although overall the predictive capability of the model is comparable to the case of hardness after annealing, 
considering the R2 values, we must expect a higher error in predicting the hardness value after hardening 
compared to that of hardness after annealing (16 HV versus 9 HV) using this trained model. In an attempt to 
reduce the mean prediction error, further experiments were conducted by varying the training conditions. For 
subsequent training, the dataset was narrowed down to evaluate the predictive capacity within the most 
characterized region of the alloy space. Table 5 shows the total number of alloys for each karatage; it was decided 
to limit the dataset to 18 karats, which is the most characterized karatage with 109 alloys (Table 5). 
 
 
 

 

Figure 1: Prediction error in the test dataset for hardness after age hardening, full dataset. 



   
 
 

Table 5: Sum for each karatage of the alloys with age hardening data 

 
RED GOLD 

ALLOYS 
YELLOW 

GOLD ALLOYS 
WHITE GOLD 

ALLOYS 

WHITE GOLD 
ALLOYS WITH 

PD 

SILVER 
ALLOYS 

SUM 

(375) 5  14 3  22 

(417) 3  11 4  18 

(585) 6 3 27 3  39 

(750) 23 30 36 20  109 

(875)   3   3 

(917)   1   1 

(925)     29 29 
 

Table 6:Training parameters and prediction evaluation for hardness after age hardening, only 18k 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

76 + 33 19 0.66 15 0.72 16 

 
The result, reported in Table 6 and Figure 2, highlights a MAE very similar to the previous case, but a worse R2. 
Even though the selected region in the alloy composition space is densely populated in terms of characterized 
combinations, the effect of an overall limited number of data points compared to the number of features (109 
data points for 19 elements) impacts the predictive outcome, making it overall worse than the previous case. 

 

In the subsequent training trial, a predetermined split of the training and test sets was chosen instead of relying 
on the random division of the initial dataset. This predefined split was specifically designed to ensure a balanced 
representation of all analyzed alloy categories in both sets, maintaining the 70% data ratio in the training set and 
30% in the test set. 
 

Figure 2: Prediction error in the test dataset for hardness after hardening, 18 k only. 



   
 
Table 7: Training parameters and prediction evaluation for hardness after age hardening, full dataset, predefined train 

and test set. 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

157 + 68 19 0.82 16 0.81 18 

 
The results, as shown in Table 7 and Figure 3, indicate a predictive capacity in the training set comparable to the 
first learning trial but lower in the test set. The lack of improvement in the evaluation parameters suggests that 
in the first learning trial, the random division of the initial dataset performed by the program already ensured a 
homogeneous representation of the various alloy categories between the training and test sets.  

 

Finally, an experiment was conducted to reduce the input features through a semi-empirical approach. Feature 
reduction, commonly known as dimensionality reduction, is a widely adopted process in machine learning to 
decrease the number of input variables or features in a dataset. The main objective is to simplify the dataset while 
retaining its essential characteristics, which can contribute to improving the performance of machine learning 
models. The advantages of this approach mainly consist of: 

• Improved model performance: By eliminating irrelevant features, models can focus on the most 
informative aspects of the data, often achieving better performance. 

• Reduction of overfitting: A smaller number of features results in lower complexity, which can reduce the 
risk of overfitting. 

Generally, this process is performed using computational algorithms, but in this case, a more empirical approach 
was chosen by combining machine learning with experimental knowledge. From the list of input variables (i.e., 
elements in the composition), those that, according to experience, do not have a significant impact on the 
maximum hardness value were eliminated. Additionally, elements that contribute to the final hardness value but 
are represented very minimally in the sample (e.g., only 2 or 3 alloys in total have this element in their composition) 
were not considered, and alloys with these elements were removed from the dataset. 

 

Table 8: Training parameters and prediction evaluation for hardness after age hardening, full dataset, reduced features 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

157 + 68 15 0.79 18 0.91 13 

Figure 3: Prediction error in the test dataset for hardness after hardening, full dataset, predefined train and test set 



   
 

 

This training resulted in the best predictive performance on the test set (Table 8 and Figure 4), explaining 91% 
of the variance. However, compared to previous cases, there is a significantly better performance on the test set 
than on the training set. One of the main, but not necessarily sole, reasons for this discrepancy could be the 
presence of an outlier in the training set. For example, it could be an alloy with unusual behavior, perhaps because 
it is the only one in its composition range or due to an error in the recorded experimental data. 
To verify this hypothesis, the trend of errors in the training set was analyzed in search of anomalous results, and 
indeed, an alloy with a prediction error of 27 HV was found, significantly higher than any other error in the set. 
Upon observing the composition and hardness value, the likely explanation was found: it is the only 14 karats 
gold alloy in the entire dataset that does not harden due to its low percentage of silver. The hardness value after 
hardening, which is normally left blank for non-hardening alloys, had nevertheless been included in the alloy's 
characterization data and therefore used for training. It is worth noting that in previous learnings, the impact of 
this alloy on the evaluation parameter values was not as pronounced (it was not even considered in Learning 2 
as it is a 14 kt alloy), as the prediction error on the outlier in these cases was not significantly higher compared 
to some of the prediction errors on actually hardening alloys. 
The next step was therefore to remove this alloy from the dataset and redo the training. 
 
Table 9: Training parameters and prediction evaluation for hardness after age hardening, full dataset, reduced features 

and outlier removal 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

156 + 68 15 0.85 17 0.93 11 

Figure 4:Prediction error in the test dataset for hardness after hardening, full dataset, reduced features. 



   
 

 

The results (Table 9 and Figure 5) show an improvement in the evaluation parameters both in the training and 
testing sets, but again, better values are observed for the test set compared to the training set. Since the presence 
of other outliers has been excluded, the explanation may lie in the small size of the entire dataset and 
consequently of the test set, which represents only 30% of it: it is possible that the test set does not include 
some particular cases that are present in the training set and on which the model does not perform optimally. 
 

FROM COMPOSITION TO COLOR 
 
Coordinate L* 
 
Similarly to what was done with hardness, the first training for predicting the L* color coordinate also involved 
the entire dataset (results in Table 10), without reducing the features. The experimental data on which the training 
is based were taken with D65 illuminant and wide observation angles (10°). 
 

Table 10: Training parameters and prediction evaluation for L* coordinate, full dataset 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

277 + 120 19 0.90 0.60 0.92 0.66 

Figure 5: Prediction error in the test dataset for hardness after hardening, full dataset, reduced features and outlier removal. 



   
 

 

Observing the trend of errors in the test set (Figure 6), it is evident the presence of an outlier with a very high 
error. Analyzing the L* value of the alloy in question and comparing it to the measured value on alloys of similar 
composition, a probable experimental error in the measurement or transcription of the data has been noticed. 
The color of the alloy was then remeasured, obtaining an actual L* value of 85.61 instead of 80.95, much closer 
to the predicted value. This confirms that in this case, the error in the test was not caused by a poor prediction 
but rather by an incorrect starting data. 
The training was then repeated, correcting the erroneous data (Table 11). The evaluation parameter values show 
an improvement in both the training and test sets. Observing the error values of individual test data points (Figure 
7), a couple of points with significant errors are still noticeable, whose corresponding L* values, however, are not 
affected by experimental errors: in this case, they truly represent incorrect predictions.  
 

Table 11: Training parameters and prediction evaluation for L* coordinate, full dataset and outlier correction 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

277 + 120 19 0.92 0.57 0.94 0.58 

Figure 6: Prediction error in the test dataset for color coordinate L*, full dataset. 



   
 

 

The second training on the L* coordinate focused solely on Au alloys, across all karatage. Once again, as with 
post-hardening hardness, the aim was to concentrate on compositions with a higher density of data points, while 
avoiding overly restricting the number of points considered compared to the possible alloy constituents. The 
result highlights that, even in this case, there is no actual improvement in predictive capability. Observing the 
error trends for the test set (Figure 8), a single point with a higher error is noticeable, which, however, does not 
correspond to problematic alloys in the first training and again is not due to experimental errors. 

Table 12: Training parameters and prediction evaluation for L* coordinate, gold alloys only 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

256 + 110 19 0.90 0.57 0.83 0.60 

 

 

The final training was conducted on the entire dataset (including Au and Ag alloys), but with a reduction in 
features. This reduction excluded elements that do not contribute to the overall color of the alloy or are present 
in a very limited number of samples. Similarly to hardness, this process was carried out empirically, based on 

Figure 7: Prediction error in the test dataset for color coordinate L*, full dataset and data correction. 

Figure 8: Prediction error in the test dataset for color coordinate L*, gold alloy only. 



   
 
experimental knowledge. It's worth noting that the reduction of elements applied to color coordinates was greater 
than that for hardness, resulting in 12 remaining features compared to 15. 

Table 13: Training parameters and prediction evaluation for L* coordinate, full dataset and reduced features 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

278 + 120 12 0.94 0.52 0.93 0.61 

 

The results (Table 13) highlight an improvement for the training dataset, but this improvement is not accompanied 
by a similar enhancement in the test set. Observing the distribution of errors (Figure 9) emphasizes three points 
with errors exceeding 4, which were then analyzed more thoroughly. For the two points with an L* value close 
to 86.8, a probable explanation was found: they are the only two 18k Au-Pd alloys that contain a certain element 
in their composition. Since both alloys are in the test set for this model training, this combination of elements is 
not present in the training set. Therefore, the model is not prepared to correctly predict their brightness. 
To address this issue, further training was conducted with predefined training and test sets identical to the 
previous case, with only one of the two alloys moved from the test set to the training set (Table 14 and Figure 
10). 
 

Table 14: Training parameters and prediction evaluation for L* coordinate, full dataset, reduced features and 
predefined train and test set 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

278 + 120 12 0.92 0.55 0.94 0.57 

 
 

 
 
 

Figure 9: Prediction error in the test dataset for color coordinate L*, full dataset and reduced features. 



   
 

 

Coordinate a* 
 
As with the L* coordinate, for the a* coordinate (and subsequently for the b* coordinate), training trials first 
involved the complete dataset, then only Au alloys, and finally the complete dataset with feature reduction. 
Regarding the complete dataset, it is visible in Table 15 that the predictive behavior is overall better compared 
to the case of the L* coordinate, both in terms of R2 and MAE. This fact also reflects the trend of experimental 
brightness measurements, which depend greatly on the quality of polishing and therefore the operator's skill. In 
addition, there are no points with a prediction error that stand out from the rest ( 
 
 

 

 

 

 

 

Figure 10: Prediction error in the test dataset for color coordinate L*, full dataset, reduced features and predefined train and test set. 



   
 

 

Figure 11). 
 

Table 15: Training parameters and prediction evaluation for color coordinate a*, full dataset. 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

278 + 120 19 0.94 0.52 0.96 0.4 
 

 
 

 

 

 

 

 

 

 



   
 

 

Figure 11: Prediction error in the test dataset for color coordinate a*, full dataset. 

 
By limiting the dataset to gold alloys only, the validation parameter values are more consistent between the 
training and test sets (Table 16). However, overall, there is no improvement observed in the predictive capability 
of the model. Once again, there are no outliers with abnormal prediction errors (

 
Figure 12). 
 

Table 16: Training parameters and prediction evaluation for color coordinate a*, gold alloy only 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

256 + 110 19 0.95 0.46 0.95 0.45 

      



   
 

 

Figure 12: Prediction error in the test dataset for color coordinate a*, gold alloy only. 

Evaluating the training performed on the entire dataset but with reduced features (Table 17), it's noticed that the 
results for the training set are similar to previous trainings, while there is a slight improvement in the test phase. 
The difference between training and test, with the latter being more performant again, led to a check for any 
outliers in the training set, but none were identified. 
 

Table 17: Training parameters and prediction evaluation for color coordinate a*, full dataset and reduced features. 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

277 + 120 12 0.94 0.5 0.97 0.34 

 

Coordinate b* 
 
Training on the complete data set of coordinate b* yielded intermediate metric values between those obtained 
for L* and for a* under the same conditions (Table 18).  
 

Figure 13: Prediction error in the test dataset for color coordinate a*, full dataset, reduced features. 



   
 

Table 18: Training parameters and prediction evaluation for color coordinate b*, full dataset. 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

277 + 120 19 0.94 0.6 0.98 0.53 
 

 

 
 
 
If the training is performed only on the dataset of gold alloys, it's immediately apparent an outlier with a very high 
error in the test set (Table 17 and 

 
Figure 15) 
 

Table 19: Training parameters and prediction evaluation for color coordinate b*, gold alloys only. 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

256 + 110 19 0.95 0.57 0.91 0.60 

Figure 14: Prediction error in the test dataset for color coordinate b*, full dataset 



   
 

 

Figure 15: Prediction error in the test dataset for color coordinate b*, full dataset, gold alloys only 

An in-depth analysis of the actual and predicted values of the b* coordinate of the corresponding composition 
revealed, once again, a likely error in the recorded experimental data. Repeating the measurement confirmed this 
suspicion, with a measured value of 11.22 compared to the previous 24.6. For the first training on b*, the alloy 
with the erroneous data was in the training set, not in the test set, thus was not visible from Figure 14. The error 
in predicting the b* coordinate however was in that case not significantly different from that recorded for some 
of the other alloys, making it less visible and contributing less to the R2 and MAE values. 
Training on gold alloys only was subsequently repeated with the corrected data (Table 20 and Figure 16), resulting 
in better prediction results because they were not distorted by the error in the b* coordinate value of the alloy 
under examination. 
 
Table 20: Training parameters and prediction evaluation for color coordinate b*, gold alloys only and outlier correction. 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

256 + 110 19 0.96 0.50 0.97 0.55 

 
Figure 16: Prediction error in the test dataset for color coordinate b*, gold alloys only and outlier correction. 



   
 
By reducing the number of features, as previously done for coordinates L* and a*, the evaluation parameter 
values remain similar for the training set to those seen with gold alloys, while improving in the test set compared 
to previous trainings (Table 21). This is despite two points (clearly visible in Figure 17) having an error that exceeds 
the maximum error obtained with the previous trainings, outliers aside. In all previous trainings, these two alloys 
were in fact in the train set, not the test set, and their predictive error is therefore not present in Figure 14, Figure 
15 and Figure 16. The re-measurement of b* values for these two alloys did not reveal any previous experimental 
errors, thus leaving the probable cause of the high prediction errors to the compositions of the alloys themselves, 
which are part of a poorly characterized zone in the space of possible alloys. 
 

Table 21: Training parameters and prediction evaluation for color coordinate b*, full dataset and reduced features. 
 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

277 + 120 12 0.96 0.52 0.97 0.43 

 

COLOR COORDINATES CONVERSION 
 
Machine learning has also been used to determine the change in CIELAB coordinates values when transitioning 
from an observer with a wide field of view (10°) to an observer with a narrow field of view (2°), always with D65 
illuminant. In ISO 8654:2018, the observer with a narrow field of view is indeed reported as the primary one, 
while still maintaining an appendix regarding measurements with a wide field of view. In cases where replicating 
colorimetric measurements with a different field of view is not possible, conversion is usually feasible using 
traditional color calculation software if the complete spectrophotometric curve is available. However, direct 
conversion from simple L*, a*, and b* values is generally not allowed. Similarly, there are no analytical formulas 
that allow conversion of values from one measurement angle to another. 
Having the need to convert some of the characterization data taken in the past, for which complete curves were 
not available, it was therefore considered to use artificial intelligence to train a model capable of predicting the 
coordinate values with the new viewing angle. 
 

Coordinate L* 
  
Similarly to previous cases, the first training was conducted for all coordinates using the entire available dataset. 
Additionally, it was chosen to take only the coordinate of interest as the independent variable and not all three. 
Thus, in this case, the value of L* with measurement D65/02° is predicted solely from the value of L* measured 
with D65/10°. The results are shown in Table 22: notably, there are significantly better values in the evaluation 

Figure 17: Prediction error in the test dataset for color coordinate b*, full dataset and reduced features. 



   
 
parameters compared to those observed in predicting the L coordinate from the composition, and they are similar 
between the training and test sets. 
 

Table 22: Training parameters and prediction evaluation for color coordinate L*, full dataset. 

 

 
Figure 18: Prediction error in the test dataset for color coordinate L*, full dataset 

In the second training, the value of L* measured with D65/2° was predicted considering all three coordinates L*, 
a*, b* (measured with D65/10°) as independent variables. The results (Table 23, Figure 19) highlight a further 
improvement in predictions, both in terms of the R2 parameter and the mean absolute error. 
 

Table 23: Training parameters and prediction evaluation for color coordinate L*, full dataset and L,a,b D65/10° as 
dependent variables. 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

170 + 74 3 0.99 0.14 0.99 0.12 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

170 + 74 1 0.98 0.20 0.99 0.17 



   
 

 
Figure 19: Prediction error in the test dataset for color coordinate b, full dataset and L*,a*,b* D65/10° as dependent 
variables. 

Coordinate a*  
 
As with the L* coordinate, the first training for the coordinate a* also occurred with the entire dataset, considering 
only the same coordinate under D65/10° conditions as the independent variable. 
The results (Table 24) are significantly worse than those obtained with the L* coordinate. Observing the 
distribution of errors in the test set (Figure 20), there is a deterioration in predictive capability at the lower and 
upper extremes of the a* value range, i.e., between -2 and 0 and between the values 8 and 10. 
 

Table 24: Training parameters and prediction evaluation for color coordinate a*, full dataset 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

170 + 74 1 0.96 0.48 0.96 0.46 

 
Figure 20: Prediction error in the test dataset for color coordinate a*, full dataset. 

Including L* and b* among the independent variables results in a significant improvement in predictive capability 
(Table 25), with R2 and MAE values practically identical to those obtained for the L* coordinate under the same 
training conditions. The error distribution also appears much more random (Figure 21). 



   
 

 
Table 25: Training parameters and prediction evaluation for color coordinate a*, full dataset and L*,a*,b* D65/10° as 

dependent variables 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

170 + 74 3 0.99 0.14 0.99 0.12 

 
Figure 21: Prediction error in the test dataset for color coordinate L*, full dataset and L*, a*, b* D65/10° as dependent 

variables. 

Coordinate b* 
 
For the b* coordinate, a similar behavior to that of the L* coordinate was observed: even with only one 
independent variable (b* value with D65/10°), the evaluation parameters show good values (Table 26). 
 

Table 26: Training parameters and prediction evaluation for color coordinate b*, full dataset 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

170 + 74 1 0.99 0.26 0.99 0.23 

 



   
 

 
Figure 22: Prediction error in the test dataset for color coordinate b*, full dataset 

By including L* and a* as variables, there is a further improvement (Table 25Table 27), as observed for the other 
two coordinates, although it is more limited in terms of mean absolute error. 
 
Table 27: Training parameters and prediction evaluation for color coordinate b*, full dataset and L*, a*, b* D65/10° as 

dependent variables 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

170 + 74 3 0.99 0.21 0.99 0.17 

 
Figure 23: Prediction error in the test dataset for color coordinate b*, full dataset and L*, a*, b* D65/10° as 

dependent variables. 

FROM COMPOSITION TO MELTING RANGE 

 
Solidus 
 



   
 
In the case of the solidus temperature value, the model trained with the complete dataset and having all 
potentially compositional elements as independent variables already exhibits good predictive capability (Table 28) 
 

Table 28: Training parameters and prediction evaluation for solidus temperature, full dataset 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

312+ 132 19 0.83 13 0.86 13 
 
However, observing the error distribution for the test set (Figure 24), a non-random trend is noticeable, with 
higher errors at the extremes of the solidus temperature value range. This may indicate a difficulty in generalizing 
predictions for compositions that actually have particularly high or low solidus values. 

 

By reducing the number of features from 19 to 13, eliminating elements from the list of independent variables 
that do not contribute to the solidus value or are poorly represented, the R2 and MAE values improve, especially 
in the test set (Table 29)Table 29 

 
Table 29: Training parameters and prediction evaluation for solidus temperature, full dataset and reduced features 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

312+ 132 13 0.88 12 0.95 5 

 
Furthermore, the error distribution (Figure 25) exhibits a much more random trend, indicating an improved 
predictive capability, especially for alloys with solidus values at the lower or upper limit of the range, which were 
less accurately predicted in the initial training.  

Figure 24: Prediction error in the test dataset for solidus temperature, full dataset 



   
 

 

Liquidus 
 
As already observed for the solidus, in the case of the liquidus, training performed on the entire dataset, using 
the full range of features, shows good predictive values (Table 30, Figure 26). 
 

Table 30: Training parameters and prediction evaluation for liquidus temperature, full dataset 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

312+ 132 19 0.91 9 0.91 11 

 

 

Proceeding with training using reduced features results in a further improvement of evaluation parameters for 
the test set, while the values for the training set remain almost unchanged (Table 31). 
 

Figure 25: Prediction error in the test dataset for solidus temperature, full dataset and reduced features 

Figure 26: Prediction error in the test dataset for liquidus temperature, full dataset 



   
 

Table 31: Training parameters and prediction evaluation for solidus temperature, full dataset and reduced features 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

312+ 132 13 0.91 10 0.97 4 

 
In the test set, there is no longer a single point with a large prediction error (Figure 27). The alloy that had a high 
error in the previous training no longer exhibits an anomalous error in this case. 

 

FROM COMPOSITION TO MECHANICAL PROPERTIES AFTER ANNEALING 
 
In the case of mechanical properties derived experimentally from wire tensile tests, where the alloy is cold-worked 
and then annealed, it is observed that with the complete dataset and non-reduced features, the R2 values for 
both the train and test sets are generally lower than those obtained for the other characteristics analyzed so far. 
This could be due to various reasons, such as a reduced number of data points compared to the variability of 
tensile behaviors of the various alloys or high experimental error that introduces uncertainty in the data used for 
training. 
 

ELONGATION 
 
Analyzing the R2 and MAE values obtained for the prediction of maximum elongation, the described trend is 
evident (Table 32, Figure 28Figure 28): both for the train and test sets, the R2 values are just above 0.5, indicating 
that slightly more than half of the variance is explained by the training model. 
 

Table 32: Training parameters and prediction evaluation for elongation, full dataset 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

192 + 83 19 0.57 3 0.53 3.4 

 

Figure 27: Prediction error in the test dataset for liquidus temperature, full dataset and reduced features 



   
 

 

Trying to reduce the number of features (Table 33, Figure 29) actually yields an even worse result, demonstrating 
that in this case, the difficulty of prediction does not lie in the high number of features (i.e., possible alloying 
elements) but is likely due to a combination of sparse data and high experimental error. 
 

Table 33: Training parameters and prediction evaluation for elongation, full dataset and reduced features 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

192 + 83 14 0.57 3.2 0.36 4 

 

 

YIELD STRENGTH 
 
The predictive result for the physical characteristic of yield strength after annealing (Table 34, Figure 30) is better 
than that of maximum elongation but still remains poor compared to the other physical characteristics analyzed. 

Figure 28: Prediction error in the test dataset for elongation, full dataset. 

Figure 29: Prediction error in the test dataset for elongation, full dataset, reduced features. 



   
 
 

Table 34: Training parameters and prediction evaluation for yield strength, full dataset  

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

192 + 83 19 0.59 42 0.73 32 

 

Contrary to the previous case, however, reducing the features, identical to that performed for maximum 
elongation, brings a significant improvement in predictive terms (Figure 31), bringing the R2 values (Table 35) 
closer to those seen for the prediction of hardness, color, and melting range. 
 

Table 35: Training parameters and prediction evaluation for yield strength, full dataset and reduced features 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

192 + 83 14 0.72 29 0.88 19 

 
 

Figure 30: Prediction error in the test dataset for yield strength, full dataset. 

Figure 31: Prediction error in the test dataset for yield strength, full dataset, reduced features. 



   
 

 
ULTIMATE TENSILE STRENGTH 
 
The last mechanical property for which a prediction model was trained is the ultimate tensile strength. The results 
obtained are similar to those observed for yield strength: not particularly high predictive capability with all 
features (Table 36, Figure 32), which significantly improves by eliminating elements from the variables that do 
not influence mechanical behavior or are poorly represented ( 

 
Table 37, Figure 33). 
 

Table 36: Training parameters and prediction evaluation for UTS, full dataset  

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

192 + 83 19 0.61 45 0.68 45 



   
 
 

 

Table 37: Training parameters and prediction evaluation for UTS, full dataset and reduced features 

DATA N° 
 (TRAIN + TEST) 

FEATURES 
N° 

R2 TRAIN MAE TRAIN R2 TEST MAE TEST 

192 + 83 14 0.71 29 0.83 27 

 

Figure 32: Prediction error in the test dataset for UTS, full dataset 



   
 

 

EXPERIMENTAL TESTING 
 
After training the models, their effectiveness in prediction was tested on the physical characteristics of a test 
alloy with a composition that had never been studied, and thus was not present in any of the previously used 
datasets. The constituent elements of the alloy are nevertheless part of the set of elements explored with 
previous compositions, albeit in different quantities, to stay within the range of characterized compositions.  
The results obtained, both through the classical characterization process and using the trained predictive models, 
are reported in  
 
 
 
Table 39, while in Table 38 are listed the trained model used to predict each property. 
 

Table 38: trained models used for the prediction of each characteristic. 

  BEST TRAINED MODEL 

HARDNESS (ANNEALED) FULL DATA 

HARDNESS (HARDENED) FULL DATA, REDUCED FEATURES 

L* (D65/10°) FULL DATA, REDUCED FEATURES 

A* (D65/10°) FULL DATA, REDUCED FEATURES 

B* (D65/10°) FULL DATA, REDUCED FEATURES 

SOLIDUS FULL DATA, REDUCED FEATURES 

LIQUIDUS FULL DATA, REDUCED FEATURES 

 ELONGATION (ANNEALED) FULL DATA 

YIELD STRENGTH (ANNEALED) FULL DATA, REDUCED FEATURES 

UTS (ANNEALED) FULL DATA, REDUCED FEATURES 

 
 

 
 

Figure 33: Prediction error in the test dataset for UTS, full dataset, reduced features. 



   
 
 

Table 39: comparison between experimental and predicted values for test alloy. 

  EXPERIMENTAL PREDICTED Δ 

HARDNESS (ANNEALED) 157 HV 178 HV 21 HV 

HARDNESS (HARDENED) 288 HV 300 HV 12 HV 

L* (D65/10°) 86,6 86,54 0,06 

A* (D65/10°) 8,35 7,38 0,97 

B* (D65/10°) 18,49 18,43 0,06 

SOLIDUS 883 °C 882 °C 1 °C 

LIQUIDUS 887 °C 892 °C 5 °C 

 ELONGATION (ANNEALED) 34 % 33 % 1 % 

YIELD STRENGTH (ANNEALED) 333 MPa 337 MPa 4 MPa 

UTS (ANNEALED) 510 MPa 507 MPa 3 MPa 

 
Overall, the predictive capability proves to be very good for almost all explored parameters, except for coordinate 
a* and post-annealing hardness, which exhibit an error almost double compared to the MAE obtained in the 
model test. 
Notwithstanding this, the prediction provides a solid preliminary indication of the alloy's characteristics in a very 
short time saving considerable characterization effort. 
In fact, the standard characterization process for the physical properties evaluated starts with the material casting 
to obtain semi-finished products that are then used to produce a wire by drawing and medallions by rolling and 
forming. The wire is subjected to a tensile test, from which the elongation, yield strength and UTS values are 
derived. The medals, on the other hand, undergo various heat treatments to obtain the hardness values after 
annealing and after age hardening. Colour coordinates are also measured on a polished medal and finally a 
fragment of the material is used for thermal analysis.  
The comprehensive analysis of average working times using standard characterization or simulation is reported 
in Table 40. 
 

Table 40: working times for operators and instruments (minutes). 

PROCESS PHASE 
OPERATOR TIME 

(min) 
INSTRUMENT 

TIME (min) 

STANDARD 
CHARACTERIZATION 

ALLOY MELTING 30 30 

WIRE PREPARATION 60 60 

MEDALS PREPARATION 60 60 

COLOR TEST 20 20 

TENSILE TEST 90 90 

AGE HARDENING TESTS 120* 600* 

DTA ANALYSIS 20 180 

TOTAL 400 1040 

SIMULATION 
SIMULATION 20 5 

TOTAL 20 5 

 
 
The time indicated for age hardening tests (600 minutes) is that required to complete the usual array of treatment 
conditions, e.g. temperatures of 250, 300 and 350°C for 1, 2 or 3 hours, for a total of 9 tests. At the end of these 
tests, not only is the maximum hardness value known, but also the temperature and time at which it was reached. 
At the moment, with machine learning, only the maximum hardness has a trained model and is therefore 



   
 
predictable. However, it will be possible to obtain temperature and time once a specific model has been 
developed. 
Summing up the times reported in Table 40, in the case of conventional characterization, we obtain 400 minutes 
of operator time, compared to 20 minutes of work using machine learning, a time 20 times lower. The ratio is 
even more advantageous for machine learning when considering equipment usage times. Moreover, the indicated 
timelines for characterization only reflect the operational times, without taking into consideration common 
sources of delay present in the daily laboratory activity, such as the availability of precious materials and the 
occupation of equipment for other projects developed in parallel. 
Directly linked to the working times, the number of necessary instruments, and their energy consumption is also 
the environmental impact of the activities. An approximate calculation of the environmental impact of the alloy 
characterization, considering only the necessary processes and not the equivalent CO2 produced by the materials 
extraction or refining, is presented in Table 41 (greenhouse gas emission values for electricity production in the 
Italian market obtained from the ISPRA report 2019 7). As expected, greenhouse gas emissions are in the order 
of grams for the simulation of the properties of a single alloy, while they reach more than 14 kg of CO2 for a 
standard characterisation process. 
 

Table 41: CO2eq (Kg) produced for standard characterization and simulation. 

PROCESS PHASE CO2eq (Kg) 

STANDARD 
CHARACTERIZATION 

ALLOY MELTING 3,6 

WIRE PREPARATION 0,4 

MEDALS PREPARATION 0,1 
COLOR TEST 0,1 
TENSILE TEST 0,1 

AGE HARDENING TESTS 8 

DTA ANALYSIS 2,4 

TOTAL 14,7 

SIMULATION 
SIMULATION 0,01 

TOTAL 0,01 

 

CONCLUSIONS 
 
As a result of the tests performed, it can be stated that feature reduction generally leads to consistent 
enhancements in model performance metrics, such as R2 values and mean absolute error, across diverse 
predictive tasks. However, it's important to consider the inherent experimental uncertainties and sensitivities of 
each property when interpreting the results. To properly compare prediction uncertainty with experimental 
uncertainty, however, we must consider the Root Mean Squared Error (RMSE) of the model, rather than the 
Mean Absolute Error (MAE). RMSE is indeed calculated as: 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛
∑(𝑦𝑡𝑟𝑢𝑒 −  𝑦𝑝𝑟𝑒𝑑)

2
 

In comparison to the formula for calculating MAE, as seen in the section on model evaluation metrics, the formula 
for calculating RMSE is much more similar to the formula for standard deviation (σ) used to express experimental 
uncertainty: 

𝜎 = √ 
1

𝑛
∑(𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −  𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

2
 

For the models identified as the best based on R2 and MAE, the value of RMSE for test data has also been 
calculated and compared to experimental standard deviation (Table 42).  



   
 

 
Table 42: MAE and RMSE values for the test dataset of best trained model. The last column represents the standard 

deviation typically observed in experiments for the analyzed property 

  BEST TRAINED MODEL MAE RMSE σ 

HARDNESS (ANNEALED) FULL DATA 9 13 15 

HARDNESS (HARDENED) FULL DATA, REDUCED FEATURES 11 17 15 

L* (D65/10°) FULL DATA, REDUCED FEATURES 0,57 0,86 0,15 

A* (D65/10°) FULL DATA, REDUCED FEATURES 0,34 0,55 0,1 

B* (D65/10°) FULL DATA, REDUCED FEATURES 0,43 0,80 0,1 

SOLIDUS FULL DATA, REDUCED FEATURES 5 13 5 

LIQUIDUS FULL DATA, REDUCED FEATURES 4 10 5 

 ELONGATION (ANNEALED) FULL DATA 3 5 3 

YIELD STRENGTH (ANNEALED) FULL DATA, REDUCED FEATURES 19 28 10 

UTS (ANNEALED) FULL DATA, REDUCED FEATURES 27 38 10 

 
Prediction error for material hardness with reduced feature sets have resulted in errors of 13 HV for annealed 
alloys and 17 HV for age hardened alloys. These errors are deemed satisfactory considering the inherent 
experimental variability, typically around 15 HV. This improvement indicates that the selected features effectively 
capture the pertinent underlying factors influencing hardness variations across various alloy states. 
When predicting color coordinates instead, particularly L*, a*, and b* values, the errors obtained are exceeding 
the experimental error. Experimental inaccuracies are in fact approximately 0.1 for a* and b* and slightly higher 
for L*, mainly because the lightness index is more sensitive to sample preparation techniques. The visual 
sensitivity of the human eye enables the perception of overall differences in terms of ΔECMC of about 1, and this 
value could be easily exceeded by the combination of prediction errors of the three different color coordinates. 
This implies that relying solely on machine learning prediction could potentially assess alloys as equal when, in 
reality, they exhibit visibly different colors. 
For the change in color coordinates, the experimental error is zero because it is a recalculation of the values from 
the measured curve. For the prediction, however, there is still an error because we are approximating a calculation 
made from several inputs (light intensity at different wavelengths) using only 3 independent variables for training. 
It is worth noting that, in this case, training with maximum feature reduction (1 feature) does not correspond to 
the maximum prediction value, highlighting that when features are reduced too much, removing crucial 
information, the prediction result worsens. 
As regards melting range estimation, errors on solidus (13 °C) and liquidus (10°C) are bigger than experimental 
errors. However, unlike with color coordinates, an error of 10°C in temperature estimation does not pose any 
particular practical problems and could be considered a satisfactory result. Finally, the error in predictions of 
ultimate tensile strength (UTS) and yield strength is slightly larger than the experimental error, which averages 
around 10 MPa. In the case of maximum elongation, the error of 5 on the percentage is not too far from the 
experimental error 3. However, it is interesting to note that in this case, feature reduction did not yield the best 
results. 
As demonstrated by the characterization of the test alloy, the RMSE value alone provides only an indication of 
predictive error because, when considering each individual prediction, errors can vary widely. Prediction errors 
for test alloy were in fact on average much lower than RMSE values for trained models, with the exception of a* 
coordinate. Overall, we can affirm that the results obtained in predicting the test alloy were good, providing a 
solid preliminary indication of the alloy's characteristics in a very short time and saving considerable 
characterization effort.  
To further enhance predictive performance, the primary approach would be to increase the available data for 
model training, particularly for compositions that are currently poorly characterized. Additionally, it's important 
to note that this work was carried out by non-professional machine learning operators, and conducting a 
professional-level analysis could certainly lead to improved results compared to the current ones. 
For the future, another compelling application of trained models involves implementing a program capable of 
employing these models to conduct a reverse prediction process, contrasting with the one studied thus far. Rather 
than deriving the value of a physical property from the composition, this program would begin with a specific 
desired value for a physical property and predict the composition necessary to attain it. This process, although 



   
 
more complex to set up, would have very interesting and immediate applications in the day-to-day work of 
researching new compositions. It could streamline the material design process by allowing researchers to specify 
desired material properties and automatically generate compositions that meet those specifications. 
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